
Paper VI: Object Oriented Programming Using C++

Unit I: Concept of OOP

Difference between OOP and POP

POP OOP
POP means procedure oriented

programming. Language are

C,PASCAL etc.

OOP means object oriented

programming. Language are C++,

Java etc.

In POP program divide into small

parts call function

In POP program divide into parts

called object.

In POP, important is not given to

data but to function as well as

sequence of actions (procedure)

to be done.

In OOP, important is given to

data but not to function or

procedure.

POP is top down approach. OOP is bottom up approach.

POP don’t have any access

specifier.

OOP have access specifier i.e.

private, public and protected

In OOP, overloading is not

possible.

In OOP, overloading is possible

in the form of function and

operator overloading.

History of C++

 C++ is an object oriented programming language. It was

developed by Bjarne Strousrup at AT & T Bell lab in USA in early

1980s. It combines the object oriented features of language called

simula 67 and power of C, the result was C++. Therefore, C++ is an

extension of C with major addition of the class constructed feature of

simula 67. Bjarne Straustrup initially called new language C with

classes. However in letter 1993 the name was changed to C++

because of some new added feature.

 C++ is a super set of C. Almost all C program are also C++

program. The most important facilities that C++ adds on to C are

classes, inheritance, functions overloading and operator overloading.

The object oriented feature in C++ allow to programme to build large

programmes with clearly efficiency and easy for maintenance.

Basic Concept of OOP(Object Oriented Program)

1) Objects –

 In oop the programs consists of different objects. Objects are

basic run time entities. In object oriented system they may represent a

person, place, bank account or any item. Programming problem is

analysing in terms of object and nature communication between them.

When programs executed the objects interact by sending message to

another object.

For example, consider library system which has different objects as

book and member. Member object can pass message to book object to

request for a book. Each object contains data and function to

manipulate data. Different system can have different objects.

 Item in inventory system.

 Customer in Bank

 Book in library System

 GUI element like menu, icon

 Employee in Payroll System.

Class –

Book

Book Code

Book Name

Book Author

Accept()

Issue()

 Class is a user defined data type, which consist of data member

and member function. Classes are declared by using the keyword

class, followed by class name and objects are instance of class.

 Once a class has been define, we can create no. of object

belonging to that class, each object is associated with the data of type

class, which are created.

class Book

{

private:

int code;

char author;

char name;

public:

accept();

issue();

};

FEATURE OF OBJECT ORIENTED PROGRAMMING

1) Data Encapsulation:

 The binding of data and function into single unit is called data

encapsulation. Encapsulation is the most striking feature of the class.

The data can’t be accessible to the outside the world and only there

function which is present in the class can access it. This function

provides the interface between the objects data and program. This

insulation of the data from direct access by the function(program) is

called as data hiding. The internal data of an object is hidden from

rest of program. To hide a data we have to put it in class and make it

private.

Syntax –

 class class_name

 {

 private:

 variable declaration;

 function declaration;

 public:

 variable declaration;

 function declared;

 };

2) Data Abstraction –

 Abstraction refers to act of representing essential features

without including the background detail or explanation. The process

of define data type is called an abstract data type. The definition of an

abstract data type involves specifying the internal representation of

the abstract data type as well as the function to be used to manipulate

the abstract data type.

3) Inheritance –

 Inheritance is the ability to derive new class from an existing

one. The child class is subset of the parents. It supports the concept of

hierarchical classification.

 From the figure given below (vehicle) is the base i.e. parent

class, which has its own property. Two classes derived from parent

are Two Wheeler and Four Vehicle. From that again four derived

classes namely are class Bajaj, Hero Honda and Santro, Indica. The

important thing behind this is that each derived class shared common

characteristics with the class from which it is derived.

Vehicle

 Two wheeler Four Wheeler

 Bajaj Hero Honda Santro Indica

4) Polymorphism –

 Object Oriented Programming language (like C++) support

polymorphism which implies one interface multiple forms (methods.)

Poly means “many” and morph means “form”

 From the above figure consider a multi coloured ball pen which

will have different coloured refills and you can select the desired

colour for writing.

 So depending on what argument is passed, the right function

will get called. Thus you have same function name write() which

behaves differently depending on the types of argument (refill), is

known as function over loading.

 The behaviour depends upon the types of data used in the

operation e.g. Consider the operation of addition of two numbers. The

operation will generate its sum. If the operation on string then, the

operation will produce 3
rd

 string by concatenation. This process is

known as operator overloading.

Reusability –

 The term refers to the ability for multiple programmers to use

same written and debugged existing data. This is time, effort and

money saving concept.

Application of OOP

 Application of OOP provides gain in many areas. The most

popular application of oop is in the area of user interface designing

such as windows (Operating System).

Multi Coloured Ball

Pen

Write

 Real business systems are more complex and contain many

more objects with complicated attributes and method. Oop is useful in

this type of application.

1) Real time system 2) Simulation 3) OO data Base

4) A.I. (Artificial Intelligence) and expert system

5) Neural Network 6) CAD (Computer Added Design) and

CAM (Computer Added Manufacturer)

Structure of C++ Program

Comment line

Link section

Global/Symbolic Declaration,

Class Declaration

Member function Definition

Main() Function Definition

main() Function – A C++ program must have one and only one

function with the name main. The main() function should have return

type of value either int or void. Since, main is entry point to the

program from calling process. Object of class is declared inside main

function.

Member Function –

 Member function is used manipulate data member. The name of

function should indicate what task or purpose that function is to be

performing. Function name can be composed of letter, digits and

underscore. Function must have a pair of curly braces { }. This shows

beginning and end of function. The statement written in function is

terminated with a semi colon(;), this called the statement terminator.

Class of Declaration –

 Class is user between data type. It is almost like a structure in a

C program. But there is only a difference between structure and class,

in a class data member & member function are declared but in

structure only data member are declared. Declared function data

variable collectively called class member. They are grouped under

three section namely private, public and protected.

Comment line, link section and Global/Symbolic Declaration –

This section consists of comment, link section, definition section (

global/symbolic declaration), where comment gives abstract of

program, Link section gives instruction to the function to link library

files and Definition section declare all symbolic constants and global

declaration.

Input & Output Statement

 Output Operator

This statement,

 cout<< “C++ is better than C”;

 the string in quotation mark to be displayed on the screen. This

statement introduce to new C++ feature, cout and <<. The identifier

cout is predefine object, that represents the standard output in C++.

Here the standard output represent the screen. The operator << is

called the insertion or put operator, it inserts (sends) the content of the

variable to its left.

e.g. 1) cout << “x= ”; 2) cout<< “Enter two number”;

Input Operator

The statement

 cin >> number1;

is an input statement & causes the program to wait user to type (enter)

a number. The entered is a placed in the variable number1. The cin

Screen Cout << C++

predefine object in C++ that corresponds to the standard input string.

The operator >> is known as extraction or get from operator. It

extracts (takes) value from the key board and assigns it to the scanf

operation.

e.g. 1) cin >> i;

 2) cin >> a >> b;

Managing output with manipulators

 The headers file <iomanip.h> provides set of function called

manipulator, which can be used to manipulate the o/p format.

Manipulators are special function that changes certain characteristic

of the o/p.

1) End1 – The endl is an o/p manipulator which ends the line (to

generate line feed character). The endl may be used several times in a

C++ statement. It has same effect as using the new line (“\n”).

e.g.- cout << “a” = “<< a << endl;

 cout << “b” = “<< b<< endl;”

o/p - a = 20;

 b = 30;

2) setbase() : The setbase() manipulate is used to convert the base of

one numeric value into another base. Following are the common base

converter in C++.

 Dec = Decimal base(10)

 Oct = Octal base (8)

 Hexa = hexadecimal base (16)

This setbase() manipulator is also used to define the base of numeric

value of the variable. The prototypes of the set base() manipulator is

define in the iomanip.h header file.

 e.g. #include<iostream.h>

k/b cin >> 45

 #include<iomanip.h>

 main()

 {

 int value;

 cout<<"Enter No."<<endl;

 cin>>value;

 cout<<"Decimal Base= "<<setbase(10)<<value<<endl;

 cout<<"Octal Base= "<<setbase(8)<<value<<endl;

 cout<<"Hexa Base= "<<setbase(16)<<value<<endl;

 }

3) setw(): The setw() stands for set width. The setw() manipulator is

used to set width of a variable (Specify minimum no. of character

position) on the o/p field a variable will consume.

Syntax – setw(int w);

The default field width is zero.

#include<iostream.h>

 #include<iomanip.h>

 main()

 {

 int a,b;

 a=200;

 b=300;

 cout<<a<<b<<endl;

 cout<<setw(5)<<a<<setw(5)<<b<<endl;

 cout<<setw(6)<<a<<setw(6)<<b<<endl;

 cout<<setw(7)<<a<<setw(7)<<b<<endl;

 }

4) setfill(); - The setfill() manipulator is used to specify a different

character to fill the unused field width of the value.

Syntax –

e.g. – setfill(char f);

The default fill character is space.

#include<iostream.h>

 #include<iomanip.h>

 main()

 {

 int a,b;

 a=200;

 b=300;

 cout<<setfill('*');

 cout<<a<<b<<endl;

 cout<<setw(5)<<a<<setw(5)<<b<<endl;

 cout<<setw(6)<<a<<setw(6)<<b<<endl;

 cout<<setw(7)<<a<<setw(7)<<b<<endl;

 }

5) setprecision();

 setprecision () is used to control the no. of digits of an o/p string,

display the floating point value.

Syntax – setprecision(int p)

The default precision is 6

#include<iostream.h>

#include<iomanip.h>

 main()

 {

 float a=5,b=6,c=a/b;

 cout<<c<<endl;

 cout<<setprecision(1)<<c<<endl;

 cout<<setprecision(2)<<c<<endl;

 cout<<setprecision(3)<<c<<endl;

 }

6) flush()–

 The flush member function is used to cause the string associated

with the o/p to be completely empted. This function takes no I/P

parameter whenever it is invoked.

#include<iostream.h>

#include<iomanip.h>

main()

{

 cout<<” My name is Computer”;

 cout.flush();

}

Program for practice:

//Class that combine both struct and function

 #include<stdio.h>

 class stud

 { private:

 int rollno,sub1,sub2;

 float fee;

 public:

 void getdata()

 {

 printf("\nEnter rollno of student ");

 scanf("%d",&rollno);

 printf("\nEnter marks of student : ");

 scanf("%d%d",&sub1,&sub2);

 printf("\nEnter fee of student ");

 scanf("\n%f",&fee);

 }

 void showdata()

 {

 printf("\n%d",rollno);

 printf("\n%d%d",sub1,sub2);

 printf("\n%f",fee);

 }

 };

 main()

 { stud s1;

 s1.getdata();

 s1.showdata();

 }

 //sum of number

 #include<iostream.h>

 class sum

 {

 int num;

 public:

 void getdata()

 {

 cout<<"\n\t Enter the number";

 cin>>num;

 }

 void showdata()

 { int i=1,result=0;

 while(i<=num)

 {

 result=result+i;

 i++;

 }

 cout<<"\n\t Addition of number is = "<<result;

 }

 };

 main()

 {

 sum s;

 s.getdata();

 s.showdata();

 }

//example of reusability

#include<iostream.h>

 class add

 {

 public:

 int a,b;

 void getdata()

 {

 cout<<"\n\t Enter value for a and b";

 cin>>a>>b;

 }

 void display()

 {

 cout<<"\t\t"<<a+b;

 }

 };

//main program of reusability

 #include<iostream.h>

 #include<c:\tcwin45\c++\use.cpp>

 class sub : public add

 {

 public:

 void getinfo()

 {

 add::getdata();

 }

 void display1()

 {

 cout<<"\n\t\t"<<a-b;

 }

 };

 void main()

 {

 sub a;

 a.getinfo();

 a.display();

 a.getinfo();

 a.display1();

 }

