
Python ─ Overview

 Python is a high-level, interpreted, interactive and
object-oriented scripting language. Python is designed to be highly
readable. It uses English keywords frequently where as other
languages use punctuation, and it has fewer syntactical constructions
than other languages.

1) Python is Interpreted: Python is processed at runtime by the
interpreter. You do not need to compile your program before
executing it. This is similar to PERL and PHP.

2) Python is Interactive: You can actually sit at a Python prompt
and interact with the interpreter directly to write your
programs.

3) Python is Object-Oriented: Python supports Object-Oriented
style or technique of programming that encapsulates code
within objects.

4) Python is a Beginner's Language: Python is a great language for
the beginner-level programmers and supports the
development of a wide range of applications from simple text
processing to WWW browsers to games.

History of Python

Python was developed by Guido van Rossum in the late eighties

and early nineties at the National Research Institute for

Mathematics and Computer Science in the Netherlands. Python is

derived from many other languages, including ABC, Modula-3, C,

C++, Algol-68, SmallTalk, Unix shell, and other scripting languages.

Python is copyrighted. Like Perl, Python source code is now

available under the GNU General Public License (GPL). Python is

now maintained by a core development team at the institute,

although Guido van Rossum still holds a vital role in directing its

progress.

Python Features

Python's features include:

 Easy-to-learn: Python has few keywords, simple structure,

and a clearly defined syntax. This allows the student to pick

up the language quickly.

 Easy-to-read: Python code is more clearly defined and

visible to the eyes.

 Easy-to-maintain: Python's source code is fairly easy-to-

maintain

 A broad standard library: Python's bulk of the library is very

portable and crossplatform compatible on UNIX, Windows,

and Macintosh.

 Interactive Mode: Python has support for an interactive

mode which allows interactive testing and debugging of

snippets of code.

 Portable: Python can run on a wide variety of hardware

platforms and has the same interface on all platforms.

 Extendable: You can add low-level modules to the Python

interpreter. These modules enable programmers to add to

or customize their tools to be more efficient.

 Databases: Python provides interfaces to all major

commercial databases.

 Scalable: Python provides a better structure and support for

large programs than shell scripting.

Apart from the above-mentioned features, Python has a big list of

good features, few are listed below:

 It supports functional and structured programming methods as

well as OOP.

 It can be used as a scripting language

 It provides very high-level dynamic data types and supports

dynamic type checking.

 It supports automatic garbage collection.

 It can be easily integrated with C, C++, COM, ActiveX, CORBA,

and Java.

Setting up PATH

Programs and other executable files can be in many directories, so

operating systems provide a search path that lists the directories

that the OS searches for executables.

The path is stored in an environment variable, which is a named

string maintained by the operating system. This variable contains

information available to the command shell and other programs.

The path variable is named as PATH in Unix or Path in Windows

(Unix is case-sensitive; Windows is not).

In Mac OS, the installer handles the path details. To invoke the

Python interpreter from any particular directory, you must add

the Python directory to your path.

Setting path at Windows

To add the Python directory to the path for a particular session in
Windows −

At the command prompt − type path %path%;C:\Python and press
Enter.

Note − C:\Python is the path of the Python directory

Internal working of Python:
In this article, we will learn about the internal working of python &
how different objects are allocated space in the memory by the
python interpreter.

Python is an object-oriented programming construct language like
Java. Python uses an interpreter and hence called an interpreted
language. Python supports minimalism and modularity to increase
readability and minimize time and space complexity. The standard
implementation of python is called “cpython” and we can use c
codes to get output in python.

Python converts the source code into a series of byte codes. So
within python, compilation stage happens, but directly into byte
code and this byte code can’t be identified by CPU. So there is a need
for a mediator to do this task. Here an interpreter comes into
existence called the python virtual machine. The python virtual
machine takes care of the execution of byte codes.

Now let’s see how frames and objects are decided in python with
different primitive and derived data types.

List

Tuple

Dictionary implementation

Set implementation

Class implementation

Conclusion

In this article, we learned about the internal working of Python and
frames/ objects allocation in Python internally.

Basic Syntax

Execute Python Syntax

As we learned in the previous page, Python syntax can be executed
by writing directly in the Command Line:

>>> print("Hello, World!")
Hello, World!

Or by creating a python file on the server, using the .py file
extension, and running it in the Command Line:

C:\Users\Your Name>python myfile.py

Python Variables

Variable is a name that is used to refer to memory location. Python
variable is also known as an identifier and used to hold value.

In Python, we don't need to specify the type of variable because
Python is a infer language and smart enough to get variable type.

Variable names can be a group of both the letters and digits, but they
have to begin with a letter or an underscore.

It is recommended to use lowercase letters for the variable name.
Rahul and rahul both are two different variables

Identifier Naming

Variables are the example of identifiers. An Identifier is used to
identify the literals used in the program. The rules to name an
identifier are given below.

o The first character of the variable must be an alphabet or
underscore (_).

o All the characters except the first character may be an alphabet
of lower-case(a-z), upper-case (A-Z), underscore, or digit (0-9).

o Identifier name must not contain any white-space, or special
character (!, @, #, %, ^, &, *).

o Identifier name must not be similar to any keyword defined in
the language.

o Identifier names are case sensitive; for example, my name, and
MyName is not the same.

o Examples of valid identifiers: a123, _n, n_9, etc.

o Examples of invalid identifiers: 1a, n%4, n 9, etc.

Declaring Variable and Assigning Values

Python does not bind us to declare a variable before using it in the
application. It allows us to create a variable at the required time.

We don't need to declare explicitly variable in Python. When we
assign any value to the variable, that variable is declared
automatically.

The equal (=) operator is used to assign value to a variable.

Object References

It is necessary to understand how the Python interpreter works
when we declare a variable. The process of treating variables is
somewhat different from many other programming languages.

Python is the highly object-oriented programming language; that's
why every data item belongs to a specific type of class. Consider the
following example.

print("John")

Output:

John

The Python object creates an integer object and displays it to the
console. In the above print statement, we have created a string

object. Let's check the type of it using the Python built-
in type() function.

type("John")

Output:

<class 'str'>

In Python, variables are a symbolic name that is a reference or
pointer to an object. The variables are used to denote objects by that
name.

Let's understand the following example

a = 50

In the above image, the variable a refers to an integer object.

Suppose we assign the integer value 50 to a new variable b.

a = 50

b = a

The variable b refers to the same object that a points to because
Python does not create another object.

Let's assign the new value to b. Now both variables will refer to the
different objects.

a = 50

b =100

Python manages memory efficiently if we assign the same
variable to two different values.

Object Identity

In Python, every created object identifies uniquely in Python. Python
provides the guaranteed that no two objects will have the same
identifier. The built-in id() function, is used to identify the object
identifier. Consider the following example.

a = 50
b = a
print(id(a))
print(id(b))
Reassigned variable a
a = 500
print(id(a))

Output:

140734982691168
140734982691168
2822056960944

We assigned the b = a, a and b both point to the same object. When
we checked by the id() function it returned the same number. We
reassign a to 500; then it referred to the new object identifier.

Variable Names

We have already discussed how to declare the valid variable. Variable names can

be any length can have uppercase, lowercase (A to Z, a to z), the digit (0-9),

and underscore character(_). Consider the following example of valid variables

names.

name = "Devansh"
age = 20
marks = 80.50

print(name)
print(age)
print(marks)

Output:

Devansh
20
80.5

Consider the following valid variables name.

name = "A"
Name = "B"
naMe = "C"
NAME = "D"
n_a_m_e = "E"
_name = "F"
name_ = "G"
name = "H"
na56me = "I"

print(name,Name,naMe,NAME,n_a_m_e, NAME, n_a_m_e, _name,
name_,_name, na56me)

Output:

A B C D E D E F G F I

In the above example, we have declared a few valid variable names
such as name, _name_ , etc. But it is not recommended because
when we try to read code, it may create confusion. The variable
name should be descriptive to make code more readable.

The multi-word keywords can be created by the following method.

o Camel Case - In the camel case, each word or abbreviation in
the middle of begins with a capital letter. There is no
intervention of whitespace. For example - nameOfStudent,
valueOfVaraible, etc.

o Pascal Case - It is the same as the Camel Case, but here the first
word is also capital. For example - NameOfStudent, etc.

o Snake Case - In the snake case, Words are separated by the
underscore. For example - name_of_student, etc.

Multiple Assignment

Python allows us to assign a value to multiple variables in a single
statement, which is also known as multiple assignments.

We can apply multiple assignments in two ways, either by assigning a
single value to multiple variables or assigning multiple values to
multiple variables. Consider the following example.

1. Assigning single value to multiple variables

Eg:

x=y=z=50
print(x)
print(y)
print(z)

Output:

50
50
50

2. Assigning multiple values to multiple variables:

Eg:

a,b,c=5,10,15
print a
print b
print c

Output:

5
10
15

The values will be assigned in the order in which variables appear.

Python Data Types

Built-in Data Types

In programming, data type is an important concept.

Variables can store data of different types, and different types can
do different things.

Python has the following data types built-in by default, in these
categories:

Text Type: str

Numeric Types: int, float, complex

Sequence Types: list, tuple, range

Mapping Type: dict

Set Types: set, frozenset

Boolean Type: bool

Binary Types: bytes, bytearray, memoryview

Getting the Data Type

You can get the data type of any object by using the type() function:

Example

Print the data type of the variable x:

x = 5

print(type(x))

Output - <class 'int'>

x = "Hello World"

#display x:

print(x)

#display the data type of x:

print(type(x))

Output –

Hello World

<class 'str'>

Setting the Data Type

In Python, the data type is set when you assign a value to a variable:

Python Operators

The operator can be defined as a symbol which is responsible for a particular

operation between two operands. Operators are the pillars of a program on

which the logic is built in a specific programming language. Python provides a

variety of operators, which are described as follows.

o Arithmetic operators

o Comparison operators

o Assignment Operators

o Logical Operators

o Bitwise Operators

o Membership Operators

o Identity Operators

Arithmetic Operators

Arithmetic operators are used to perform arithmetic operations between two

operands. It includes + (addition), - (subtraction), *(multiplication), /(divide),

%(reminder), //(floor division), and exponent (**) operators.

Consider the following table for a detailed explanation of arithmetic operators.

Operator Description

+ (Addition) It is used to add two operands. For example, if a = 20, b = 10

=> a+b = 30

- (Subtraction) It is used to subtract the second operand from the first operand.

If the first operand is less than the second operand, the value

results negative. For example, if a = 20, b = 10 => a - b = 10

/ (divide) It returns the quotient after dividing the first operand by the

second operand. For example, if a = 20, b = 10 => a/b = 2.0

*

(Multiplication)

It is used to multiply one operand with the other. For example, if

a = 20, b = 10 => a * b = 200

% (reminder) It returns the reminder after dividing the first operand by the

second operand. For example, if a = 20, b = 10 => a%b = 0

** (Exponent) It is an exponent operator represented as it calculates the first

operand power to the second operand.

// (Floor

division)

It gives the floor value of the quotient produced by dividing the

two operands.

Comparison operator

Comparison operators are used to comparing the value of the two operands and

returns Boolean true or false accordingly. The comparison operators are
described in the following table.

Operat

or

Description

== If the value of two operands is equal, then the condition becomes true.

!= If the value of two operands is not equal, then the condition becomes

true.

<= If the first operand is less than or equal to the second operand, then the

condition becomes true.

>= If the first operand is greater than or equal to the second operand, then

the condition becomes true.

> If the first operand is greater than the second operand, then the

condition becomes true.

< If the first operand is less than the second operand, then the condition

becomes true.

Assignment Operators

The assignment operators are used to assign the value of the right expression to

the left operand. The assignment operators are described in the following table.

Op

era

tor

Description

= It assigns the value of the right expression to the left operand.

+= It increases the value of the left operand by the value of the right operand

and assigns the modified value back to left operand. For example, if a = 10, b

= 20 => a+ = b will be equal to a = a+ b and therefore, a = 30.

-= It decreases the value of the left operand by the value of the right operand

and assigns the modified value back to left operand. For example, if a = 20, b

= 10 => a- = b will be equal to a = a- b and therefore, a = 10.

*= It multiplies the value of the left operand by the value of the right operand

and assigns the modified value back to then the left operand. For example, if

a = 10, b = 20 => a* = b will be equal to a = a* b and therefore, a = 200.

%= It divides the value of the left operand by the value of the right operand and

assigns the reminder back to the left operand. For example, if a = 20, b = 10

=> a % = b will be equal to a = a % b and therefore, a = 0.

= a=b will be equal to a=a**b, for example, if a = 4, b =2, a**=b will assign

4**2 = 16 to a.

//= A//=b will be equal to a = a// b, for example, if a = 4, b = 3, a//=b will

assign 4//3 = 1 to a.

Bitwise Operators

The bitwise operators perform bit by bit operation on the values of the two

operands. Consider the following example.

For example,

if a = 7

 b = 6

then, binary (a) = 0111

 binary (b) = 0011

hence, a & b = 0011

 a | b = 0111

 a ^ b = 0100

 ~ a = 1000

Logical Operators

The logical operators are used primarily in the expression evaluation to make a

decision. Python supports the following logical operators.

Operator Description

and If both the expression are true, then the condition will be true. If a

and b are the two expressions, a → true, b → true => a and b → true.

or If one of the expressions is true, then the condition will be true. If a

and b are the two expressions, a → true, b → false => a or b → true.

not If an expression a is true, then not (a) will be false and vice versa.

Membership Operators

Python membership operators are used to check the membership of value inside

a Python data structure. If the value is present in the data structure, then the

resulting value is true otherwise it returns false.

Operator Description

in It is evaluated to be true if the first operand is found in the second

operand (list, tuple, or dictionary).

not in It is evaluated to be true if the first operand is not found in the second

operand (list, tuple, or dictionary).

Identity Operators

The identity operators are used to decide whether an element certain class or

type.

Operator Description

is It is evaluated to be true if the reference present at both sides point to

the same object.

is not It is evaluated to be true if the reference present at both sides do not

point to the same object.

Operator Precedence

The precedence of the operators is essential to find out since it enables us to
know which operator should be evaluated first. The precedence table of the

operators in Python is given below.

Operator Description

** The exponent operator is given priority over all the others used

in the expression.

~ + - The negation, unary plus, and minus.

* / % // The multiplication, divide, modules, reminder, and floor

division.

+ - Binary plus, and minus

>> << Left shift. and right shift

& Binary and.

^ | Binary xor, and or

<= < > >= Comparison operators (less than, less than equal to, greater

than, greater then equal to).

<> == != Equality operators.

= %= /= //= -

= +=

*= **=

Assignment operators

is is not Identity operators

in not in Membership operators

not or and Logical operators

Conditional Statements & Looping

Python If-else statements

Decision making is the most important aspect of almost all the programming

languages. As the name implies, decision making allows us to run a particular
block of code for a particular decision. Here, the decisions are made on the

validity of the particular conditions. Condition checking is the backbone of

decision making.

In python, decision making is performed by the following statements.

Statement Description

If Statement The if statement is used to test a specific condition. If the

condition is true, a block of code (if-block) will be executed.

If - else

Statement

The if-else statement is similar to if statement except the fact

that, it also provides the block of the code for the false case of the

condition to be checked. If the condition provided in the if

statement is false, then the else statement will be executed.

Nested if

Statement

Nested if statements enable us to use if ? else statement inside an

outer if statement.

The if statement

The if statement is used to test a particular condition and if the condition is true,

it executes a block of code known as if-block. The condition of if statement can

be any valid logical expression which can be either evaluated to true or false.

The syntax of the if-statement is given below.

if expression:

 statement

Example 1
num = int(input("enter the number?"))

if num%2 == 0:

 print("Number is even")

Output:

enter the number?10

Number is even

Example 2 : Program to print the largest of the three
numbers.
a = int(input("Enter a? "));

b = int(input("Enter b? "));

c = int(input("Enter c? "));

if a>b and a>c:

 print("a is largest");

if b>a and b>c:

 print("b is largest");

if c>a and c>b:

 print("c is largest");

Output:

Enter a? 100

Enter b? 120

Enter c? 130

c is largest

The if-else statement

The if-else statement provides an else block combined with the if statement

which is executed in the false case of the condition.

If the condition is true, then the if-block is executed. Otherwise, the else-block is

executed.

The syntax of the if-else statement is given below.

if condition:

 #block of statements

else:

 #another block of statements (else-block)

Example 1 : Program to check whether a person is
eligible to vote or not.

age = int (input("Enter your age? "))

if age>=18:

 print("You are eligible to vote !!");

else:

 print("Sorry! you have to wait !!");

Output:

Enter your age? 90

You are eligible to vote !!

Example 2: Program to check whether a number is even
or not.

num = int(input("enter the number?"))

if num%2 == 0:

 print("Number is even...")

else:

 print("Number is odd...")

Output:

enter the number?10

Number is even

Python for loop

The for loop in Python is used to iterate the statements or a part of the

program several times. It is frequently used to traverse the data structures

like list, tuple, or dictionary.

The syntax of for loop in python is given below.

for iterating_var in sequence:

 statement(s)

The for loop flowchart

For loop Using Sequence

Example-1: Iterating string using for loop

str = "Python"

for i in str:

 print(i)

Output:

P

y

t

h

o

n

Example- 2: Program to print the table of the given number .

list = [1,2,3,4,5,6,7,8,9,10]

n = 5

for i in list:

 c = n*i

 print(c)

Output:

5

10

15

20

25

30

35

40

45

50s

Example-3: Program to print the sum of the given list.

list = [10,30,23,43,65,12]

sum = 0

for i in list:

 sum = sum+i

print("The sum is:",sum)

Output:

The sum is: 183

For loop Using range() function

The range() function

The range() function is used to generate the sequence of the numbers. If we

pass the range(10), it will generate the numbers from 0 to 9. The syntax of the

range() function is given below.

Syntax:

range(start,stop,step size)

o The start represents the beginning of the iteration.

o The stop represents that the loop will iterate till stop-1.

The range(1,5) will generate numbers 1 to 4 iterations. It is optional.

o The step size is used to skip the specific numbers from the iteration. It is

optional to use. By default, the step size is 1. It is optional.

Consider the following examples:

Example-1: Program to print numbers in sequence.

for i in range(10):

 print(i,end = ' ')

Output:

0 1 2 3 4 5 6 7 8 9

Example - 2: Program to print table of given number.

n = int(input("Enter the number "))

for i in range(1,11):

 c = n*i

 print(n,"*",i,"=",c)

Output:

Enter the number 10

10 * 1 = 10

10 * 2 = 20

10 * 3 = 30

10 * 4 = 40

10 * 5 = 50

10 * 6 = 60

10 * 7 = 70

10 * 8 = 80

10 * 9 = 90

10 * 10 = 100

Example-3: Program to print even number using step size in range().

n = int(input("Enter the number "))

for i in range(2,n,2):

 print(i)

Output:

Enter the number 20

2

4

6

8

10

12

14

16

18

We can also use the range() function with sequence of numbers.

The len() function is combined with range() function which iterate through a

sequence using indexing. Consider the following example.

list = ['Peter','Joseph','Ricky','Devansh']

for i in range(len(list)):

 print("Hello",list[i])

Output:

Hello Peter

Hello Joseph

Hello Ricky

Hello Devansh

Nested for loop in python

Python allows us to nest any number of for loops inside a for loop. The inner
loop is executed n number of times for every iteration of the outer loop. The

syntax is given below.

Syntax

for iterating_var1 in sequence: #outer loop

 for iterating_var2 in sequence: #inner loop

 #block of statements

#Other statements

Example- 1: Nested for loop

User input for number of rows

rows = int(input("Enter the rows:"))

Outer loop will print number of rows

for i in range(0,rows+1):

Inner loop will print number of Astrisk

 for j in range(i):

 print("*",end = '')

 print()

Output:

Enter the rows:5

*

**

Example-2: Program to number pyramid.
rows = int(input("Enter the rows"))

for i in range(0,rows+1):

 for j in range(i):

 print(i,end = '')

 print()

Output:

1

22

333

4444

55555

Using else statement with for loop

Unlike other languages like C, C++, or Java, Python allows us to use the else

statement with the for loop which can be executed only when all the iterations

are exhausted. Here, we must notice that if the loop contains any of the break
statement then the else statement will not be executed.

Example 1

for i in range(0,5):

 print(i)

else:

 print("for loop completely exhausted, since there is no break.")

Output:

0

1

2

3

4

for loop completely exhausted, since there is no break.

The for loop completely exhausted, since there is no break.

Example 2

for i in range(0,5):

 print(i)

 break;

else:print("for loop is exhausted");

print("The loop is broken due to break statement...came out of the loop")

In the above example, the loop is broken due to the break statement; therefore,

the else statement will not be executed. The statement present immediate next

to else block will be executed.

Output:

0

The loop is broken due to the break statement...came out of the loop. We will

learn more about the break statement in next tutorial.

Python While loop

The Python while loop allows a part of the code to be executed until the given

condition returns false. It is also known as a pre-tested loop.

It can be viewed as a repeating if statement. When we don't know the number
of iterations then the while loop is most effective to use.

The syntax is given below.

while expression:

 statements

Here, the statements can be a single statement or a group of statements. The
expression should be any valid Python expression resulting in true or false. The

true is any non-zero value and false is 0.

Example-1: Program to print 1 to 10 using while loop
i=1

#The while loop will iterate until condition becomes false.

While(i<=10):

 print(i)

 i=i+1

Output:

1

2

3

4

5

6

7

8

9

10

Example -2: Program to print table of given numbers.
i=1

number=0

b=9

number = int(input("Enter the number:"))

while i<=10:

 print("%d X %d = %d \n"%(number,i,number*i))

 i = i+1

Output:

Enter the number:10

10 X 1 = 10

10 X 2 = 20

10 X 3 = 30

10 X 4 = 40

10 X 5 = 50

10 X 6 = 60

10 X 7 = 70

10 X 8 = 80

10 X 9 = 90

10 X 10 = 100

Infinite while loop

If the condition is given in the while loop never becomes false, then the while

loop will never terminate, and it turns into the infinite while loop.

Any non-zero value in the while loop indicates an always-true condition,

whereas zero indicates the always-false condition. This type of approach is
useful if we want our program to run continuously in the loop without any

disturbance.

Example 1
while (1):

 print("Hi! we are inside the infinite while loop")

Output:

Hi! we are inside the infinite while loop

Hi! we are inside the infinite while loop

Example 2
var = 1

while(var != 2):

 i = int(input("Enter the number:"))

 print("Entered value is %d"%(i))

Output:

Enter the number:10

Entered value is 10

Enter the number:10

Entered value is 10

Enter the number:10

Entered value is 10

Infinite time

Using else with while loop

Python allows us to use the else statement with the while loop also. The else

block is executed when the condition given in the while statement becomes

false. Like for loop, if the while loop is broken using break statement, then the
else block will not be executed, and the statement present after else block will

be executed. The else statement is optional to use with the while loop. Consider

the following example.

Example 1
i=1

while(i<=5):

 print(i)

 i=i+1

else:

 print("The while loop exhausted")

Example 2
i=1

while(i<=5):

 print(i)

 i=i+1

 if(i==3):

 break

else:

 print("The while loop exhausted")

Output:

1

2

In the above code, when the break statement encountered, then while loop

stopped its execution and skipped the else statement.

Example-3 Program to print Fibonacci numbers to given
limit
terms = int(input("Enter the terms "))

first two intial terms

a = 0

b = 1

count = 0

check if the number of terms is Zero or negative

if (terms <= 0):

 print("Please enter a valid integer")

elif (terms == 1):

 print("Fibonacci sequence upto",limit,":")

 print(a)

else:

 print("Fibonacci sequence:")

 while (count < terms) :

 print(a, end = ' ')

 c = a + b

 # updateing values

 a = b

 b = c

 count += 1

Output:

Enter the terms 10

Fibonacci sequence:

0 1 1 2 3 5 8 13 21 34

